wood.

Stormwater Management Report

Romney Wind Development Township of Chatham-Kent and Town of Lakeshore Project #SWW187418

Wood Environment & Infrastructure Solutions 3450 Harvester Road, Suite 100 Burlington, ON L7N 3W5 Canada T: 905-335-2353

www.woodplc.com

10/11/2018

Nayereh Azad Senior Civil Engineer Wood Power & Process 700 – 202 Winston Park Drive Oakville, ON

RE: Romney Wind Development Stormwater Management Report

Dear Madam.

We are pleased to provide you with this Stormwater Management Report, which provides the supporting stormwater management (SWM) analyses for the proposed Romney Wind Development in the Township of Chatham-Kent and the Town of Lakeshore. Specifically, this SWM report addresses the proposed construction of the Operations & Maintenance building, as well as the substation location, and the proposed maintenance access roads for the wind turbines.

We trust the report adequately addresses the requirements of this project. Please do not hesitate to contact the undersigned should you require additional information.

Sincerely,

Wood Environment & Infrastructure Solutions

Prepared by: Prepared by:

Per: Matthew Senior, M.A.Sc., P.Eng. Per: Priyantha Hunukumbura, Ph.D., E.I.T.

Senior Water Resources Engineer Water Resources Analyst

Reviewed by:

Per: Peter Nimmrichter, M.Eng., P.Eng., IRP Associate Water Resources Engineer

P:\2018\Projects\SWW187418 - Romney Windfarm\05_DEL\01_RPT-TECHMEM\18-10-11 Romney Windfarm SWM Submitted.docx

Stormwater Management Report

Romney Wind Development Township of Chatham-Kent and Town of Lakeshore Project #SWW187418

Prepared for:

Wood Power & Process 700 – 202 Winston Park Drive, Oakville, ON

Prepared by:

Wood Environment & Infrastructure Solutions 3450 Harvester Road, Suite 100 Burlington, ON L7N 3W5 Canada T: 905-335-2353

10/11/2018

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by Wood (© Wood Environment & Infrastructure Solutions). save to the extent that copyright has been legally assigned by us to another party or is used by Wood under license. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Wood. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

Third-party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Wood at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Wood excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Table of Contents

1.0	Intro	duction	1
2.0	Site D	Description	3
	2.1	Existing Conditions	3
		2.1.1 Operations & Maintenance Building	3
		2.1.2 Substation	3
	2.2	Proposed Conditions	3
		2.2.1 Operations & Maintenance Building	3
		2.2.2 Substation	3
3.0	Hydro	ologic Modelling	5
	3.1	Model Selection	5
	3.2	Design Storms	5
	3.3	Modelling Parameters	5
	3.4	Modelling Results (Existing Conditions)	6
		3.4.1 Operations & Maintenance Building	6
		3.4.2 Substation	7
	3.5	Modelling Results (Proposed Conditions)	7
		3.5.1 Operations & Maintenance Building	7
		3.5.2 Substation	8
		3.5.3 Wind Turbine Access Roads	9
4.0	Hydra	aulic Assessment	11
	4.1	Operations & Maintenance Building	11
	4.2	Substation	11
	4.3	Wind Turbine Access Roads	11
5.0	Storn	nwater Quality	12
	5.1	General Approach	12
	5.2	Substation – Transformer Containment	12
6.0	Erosio	on and Sediment Control and Operations and Maintenance	14
	6.1	Erosion and Sediment Control during Construction	14
	6.2	Long Term Operations and Maintenance	14
7.0	Sumr	mary and Conclusions	15

List of Appendices

Appendix A: Calculations and Modelling Files

List of Figures

ь.			C'.	
+10	ure	1 1.	SITE	Location

Figure 1.2: Extents of Proposed Development

Figure 2.1: Proposed O&M Building Layout

Figure 2.2: Proposed Substation Layout

Figure 2.3: Drainage Area Plan – O&M Building – Existing Conditions

Figure 2.4: Drainage Area Plan – O&M Building – Future Conditions

Figure 2.5: Drainage Area Plan – Substation – Existing Conditions

Figure 2.6: Drainage Area Plan – Substatin – Future Conditions

List of Tables

- Table 3.1: Assumed Runoff Parameters for different land use types
- Table 3.2: Simulated Peak Flows for O&M Site Existing Conditions (SCS 6-Hour Design Storm)
- Table 3.3: Simulated Peak Flows for Substation Existing Conditions (SCS 6-Hour Design Storm)
- Table 3.4: Simulated Peak Flows for O&M Site Proposed Conditions (SCS 6-Hour Design Storm)
- Table 3.5: Simulated Peak Flows for Substation Proposed Conditions (SCS 6-Hour Design Storm)

1.0 Introduction

Wood Enviornment & Infrastructure Solutions, a division of Wood Canada Limited (Wood EIS), has been retained by Wood Power & Process (Wood PNP) to provide water resources engineering services to prepare a stormwater management (SWM) report related to the Romney Wind Development located in the Municipality of Chatham-Kent and the Town of Lakeshore (ref Figure 1.1). The extents of the proposed wind farm development have been provided in Figure 1.2.

Based on a review of the overall proposed development, this report has been prepared primarily for two (2) specific components of the development which would be expected to result in changes in stormwater runoff regime under proposed conditions. These two components arethe Operations & Maintenance (O&M) Building (located within the Municipality of Chatham-Kent), and the Substation (located within the Town of Lakeshore). Both sites lie within the jurisdiction of the Lower Thames River Conservation Authority (LTRCA). The focus of the current report is on these two (2) sites only.

It should also be noted that minor gravel access roads have been proposed for the wind turbine locations themselves. The hydrologic impacts of these additional changes have been reviewed further as part of Section 3 of this report.

The current report has been prepared to assess potential changes in runoff associated with the proposed development (i.e. runoff volume and peak flow, water quality) and develop necessary mitigation and management strategies accordingly.

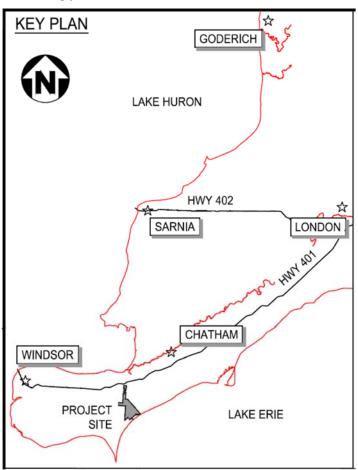
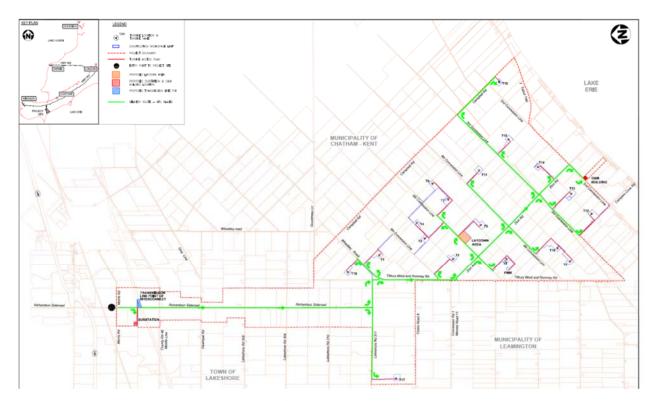



Figure 1.1: Site Location

Figure 1.2: Extents of Proposed Wind Farm Development

Page 2 of 15

2.0 **Site Description**

2.1 **Existing Conditions**

Operations & Maintenance Building 2.1.1

The site of the proposed Operations & Maintenance (O&M) Building is located within the Municipality of Chatham-Kent, along the south side of Highway 3 (Talbot Trail) between Zion Road and Campers Cove Road, close to the Lake Erie shoreline. Under current conditions, the site is rural in nature, and is used for agricultural purposes. The site is directly adjacent to a single private residence. Under existing conditions, an external area of 0.66 ha drains through the site from the north-east, as well as a portion of the residential site to the south-west (0.12 ha); refer to Figure 2.3. Overall, the area drains in a south-westerly direction, and is tributary to the Yellow Creek watershed, which drains southerly to Lake Erie. Based on information provided by the Lower Thames River Conservation Authority (LTRCA), no portion of the site is regulated. As well, no municipal drains are located within the vicinity of the proposed building.

Substation 2.1.2

The site of the proposed substation is located within the Town of Lakeshore, along the west side of Richardson Side Road, between Middle Road (County Road 46) and Morris Road (Concession Road 5). The site is completely rural in nature, and is used for agricultural purposes. Under existing conditions, a 4.77 ha portion of land from west of Richardson Side Road drains through the primary area of interest (refer to Figure 2.5). The area generally drains in a westerly direction, and is tributary to the Big Creek watershed, which drains in a northerly direction towards Lake St. Clair. Based on information provided by the LTRCA, no portion of the site is regulated. Based on information provided by the Town of Lakeshore, a Municipal Drain is located on an east-west alignment parallel to the site boundary. Based on topographic data, no surface drainage feature is present in this location, as such the municipal drain is assumed to be a subsurface pipe.

2.2 **Proposed Conditions**

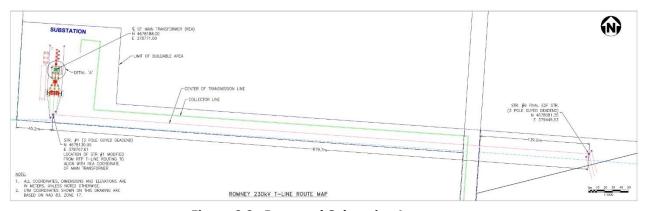
2.2.1 **Operations & Maintenance Building**

Under proposed conditions, a 0.40 ha section of the overall property will be developed for the Operations & Maintenance building, as presented in Figure 2.1. As evident from Figure 2.1, the majority of the site will be converted to a hard-packed gravel surface. An operations and maintenance building (18.3m x 18.3m, or about 335 m²) is proposed, along with a small oil shed structure (42 m²). A grassed/landscaped area would also be included around the majority of the site perimeter, and directly south of the proposed operations and maintenance building. In order to re-direct external area flows, a swale will be required around the site perimeter. Overall site drainage under proposed conditions would mimic existing condition flow paths, and is presented in Figure 2.4; further hydrologic analyses are presented in subsequent sections of this report.

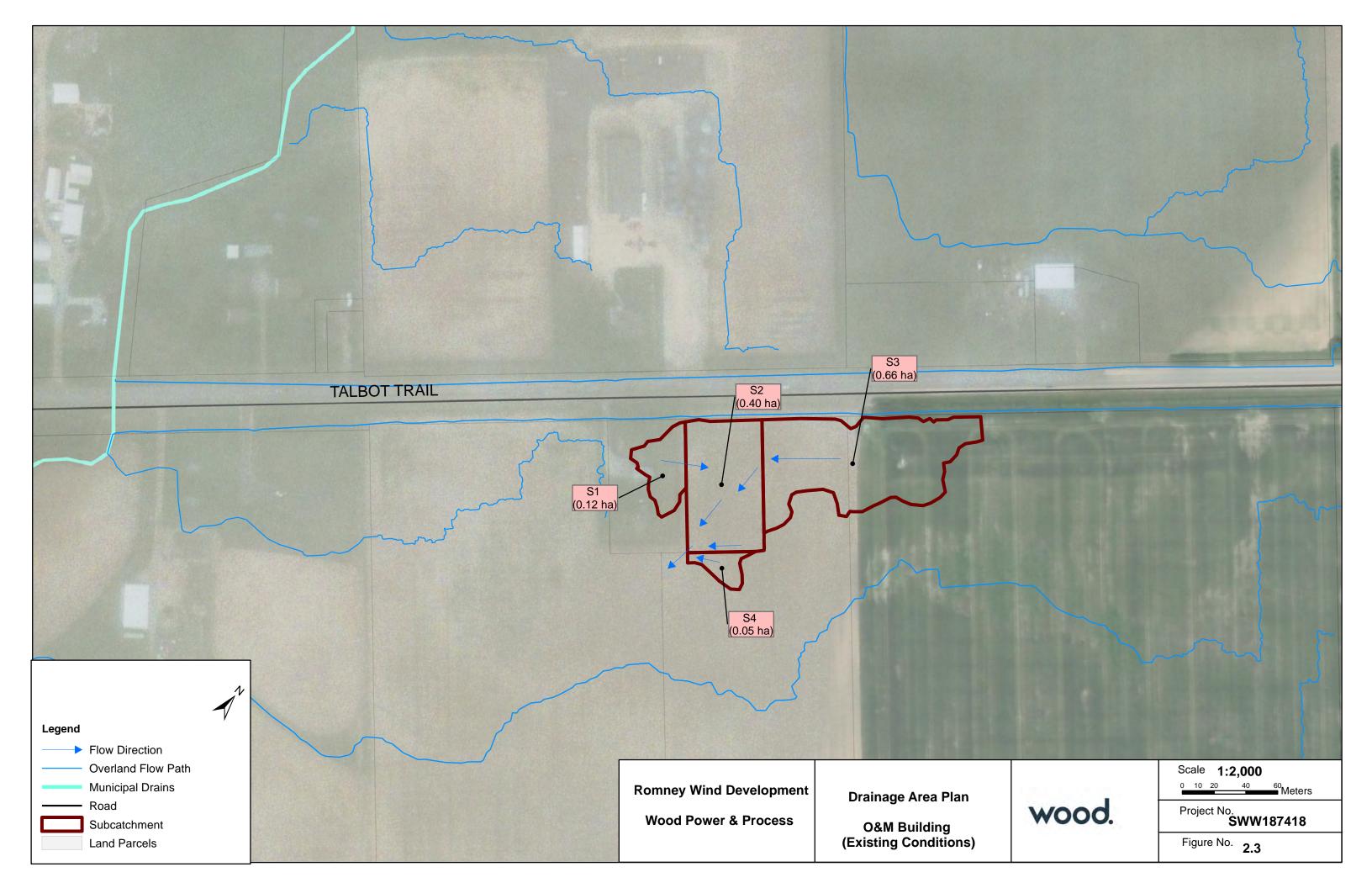
2.2.2 **Substation**

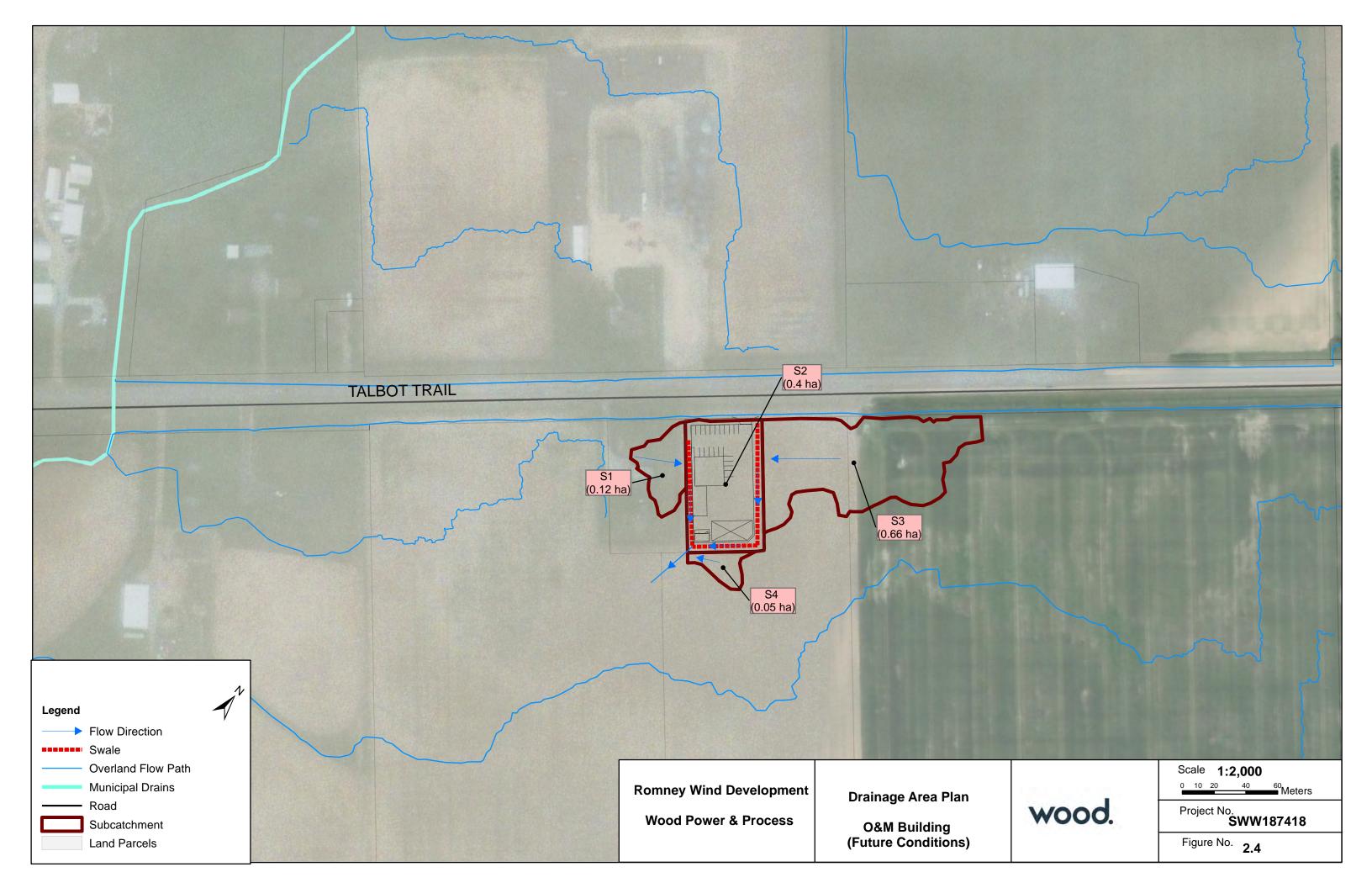
Under proposed conditions, a 0.35 ha section of the property will be developed for the substation, part of an overall 1.26 ha area (refer to Figure 2.6). This does not include the proposed 5 m gravel roadway itself (some 0.22 ha). The proposed site layout is presented in Figure 2.2. As evident from Figure 2.2., the majority of the development will be around the substation itself, some 500 m ±west of Richardson Side Road. The substation itself is understood to be placed on large diameter stone to ensure rapid drainage and limit any potential ponding, given the implications to the electrical equipment. The access road itself is also understood to consist of hard-packed gravel. In order to re-direct external area flows between Richardson

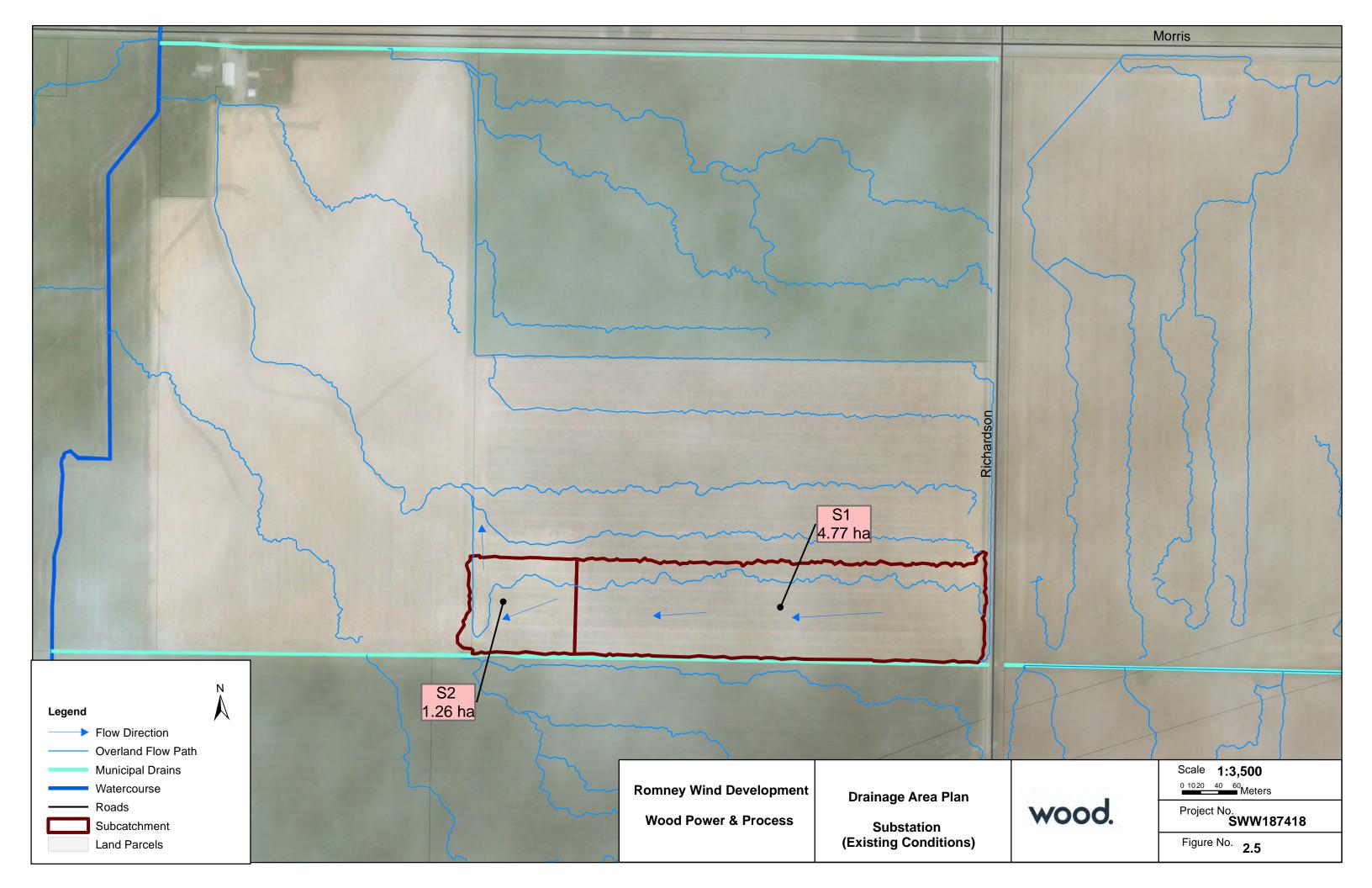
Project #SWW187418 | 10/11/2018 SWW187418



Side Road and the site itself, a swale will be required, as indicated on Figure 2.6, and discussed further in subsequent sections of the report. The existing Municipal Drain indicated on available mapping (subsurface pipe) would remain unchanged and unaffected under proposed conditions; no new connections to the drain would be made, and no grading or surface operations would be expected to impact the function of the drain.


A "double containment system" is also proposed for the substation site to address spill containment risk. This is discussed further in Section 5.




Figure 2.1: Proposed O&M Building Layout

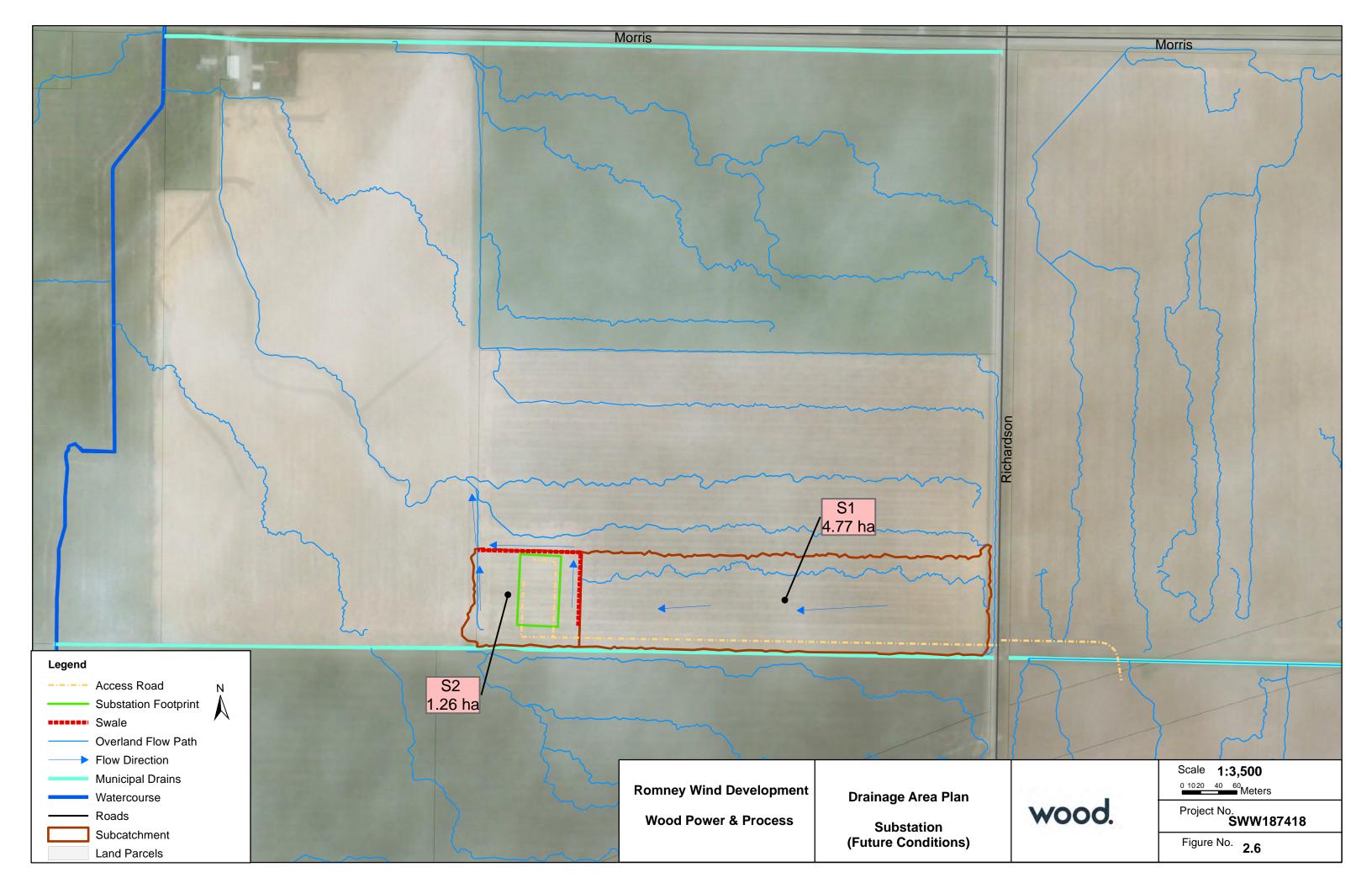


Figure 2.2: Proposed Substation Layout

3.0 Hydrologic Modelling

3.1 Model Selection

In order to evaluate the site for stormwater management, it has been necessary to conduct hydrologic modelling, to develop storm response hydrographs and associated peak flows under both existing and proposed conditions.

PCSWMM has been employed for the current assessment. PCSWMM is a graphical user interface and preprocessor for the well-known US EPA-SWMM model. It is a combined hydrologic/hydraulic model which is capable of assessing complex hydraulic conditions, including dual drainage (minor/major system) and surcharge and reverse flow. A copy of all completed PCSWMM modelling has been included in Appendix A, along with all hydrologic model parameters.

3.2 Design Storms

As part of the hydrologic modelling process, rainfall input is required. Based on the rural nature of the site, the closest available source of local intensity-duration-frequency (IDF) rainfall statistics has been reviewed. The closest available gauge with long term data is Environment Canada's Point Pelee CS station (gauge 613P001), which has 22 years of available data (1975 – 2004, including a gap between 1994-2001). As the closest available source of rainfall data, this gauge has been applied for the current assessment. A copy of the IDF data has been included in Appendix A.

Based on a brief modelling sensitivity analysis, it has been determined that the SCS 6-hour design storm distribution yields the most conservative peak flow results, and has been applied for the current assessment. The SCS design storm distributions have been widely applied throughout Southern Ontario, and the 6-hour distribution in particular typically yields the highest peak flows, as is the case here. Based on the IDF data for the site, 6-hour design storm rainfall depths range from 42.5 mm (2-year storm) to 111.11 mm (100-year storm).

3.3 Modelling Parameters

In order to determine appropriate infiltration parameters, a characterization of on-site soils is required. Based on available Ontario Soils Mapping for this area (Chatham Kent – O&M Building, and Essex County – Substation site), the area consists of heavy, highly impermeable clays (Kelvin Clay for the O&M Building and Brookston Clay for the Substation), with an associated hydrologic SCS Classification of "D". As such, an SCS Classification of "D" for the site soils is considered appropriate in both cases.

Infiltration and runoff parameters have been based on the foregoing soil classification assumption, different land uses evident within the drainage area in question, and typical literature values. Values applied for the current assessment are summarized in Table 3.1.

Table 3.1: Assumed Runoff Parameters for Different Land Use Types									
Land Use US SCS CN (AMC-II) Initial Abstraction (mm)									
Forest	79	7							
Agricultural	80 (80-94)	5							
Grass	80	5							
Gravel	91	2							
Rooftop	98	1							

As per Table 3.1, it is noted that for agricultural areas, such as row crops, legumes, or rotation meadow, Curve Number values may vary from 80 up to 94, depending on the time of year and hydrologic condition (i.e. degree of vegetation coverage, tilling, etc.). Given that gravel surfaces would be expected to have a Curve Number of 91, it is possible that in some cases, the proposed development (which largely consists of gravel surfaces) could in fact slightly reduce runoff potential. Notwithstanding, in order to provide a more standard comparison between pre-development and post-development conditions, agricultural areas have been assumed to have a lower, more permeable Curve Number of 80, which is consistent with that for grassed areas.

Infiltration modelling has applied the SCS Curve Number method, based on area-weighing and the standard values presented in Table 3.1. Initial abstractions have also been calculated based on areally-weighting the assumed values presented in Table 3.1.

There is only a small percentage of impervious areas under both existing and proposed conditions for both sites, corresponding to rooftop areas. These areas have been modelled within PCSWMM as impervious areas accordingly, using the PERVIOUS route command, which routes the impervious flows across the pervious land segment. This is considered appropriate under both existing and proposed conditions, and representative of actual drainage (i.e. roof drains discharge to the pervious ground surface).

Other hydrologic parameters, such as length and slope, have generally been directly measured from the available mapping. Overall site topography is very flat, as such a slope of 0.1% has been generally assumed, based on measurements from available digital elevation model (DEM) data.

Subcatchment length is a key parameter within PCSWMM, as it is used to represent sheet flow/overland flow, and accounts for the expected degree of attenuation (i.e. it is a surrogate for time of concentration or time to peak used in unit hydrograph methodologies). As noted, subcatchment length has been directly measured, where possible, based on the expected length of sheet flow. For those few subcatchments where a drainage channel is more well defined (such as a ditch), the subcatchment length has been defined using generally accepted relationships between channel length and flow path length, such as the Proctor & Redfern method (Proctor and Redfern, Ltd. And MacLaren, J.F. Ltd, 1976, "Stormwater Management Model Study – Vol 1". Research Rep. No. 7, Canada-Ontario Research Program, Environmental Protection Service, Ottawa), which indicated that the subcatchment width (width of the kinematic wave plane) should be 1.7 times the channel length. Thus subcatchment length is equal to the drainage area divided by 1.7 times the channel length.

3.4 Modelling Results (Existing Conditions)

3.4.1 Operations & Maintenance Building

The drainage systems of the Operations and Maintenance (O&M) Building under existing conditions have been simulated using the methodology described in Section 3.3, and as per the land use described in Section 2.1.1 (ref. Figure 2.3). Simulated peak flows for the 2 through 100 year storm events are presented in Table 3.2.

The simulated peak flows presented in Table 3.2 will serve as basis for evaluating the expected change in peak flows under proposed conditions, as described and assessed in Section 3.5.1.

wood.

Location	Drainage	Sir	nulated Pea	d Peak Flow (m³/s) for Return Period (Years)						
	Area (ha)	2	5	10	25	50	100			
S1	0.12	0.001	0.004	0.008	0.013	0.017	0.021			
S2	0.40	0.004	0.014	0.024	0.040	0.053	0.067			
S3	0.66	0.006	0.020	0.035	0.058	0.078	0.100			
S4	0.05	0.001	0.002	0.004	0.007	0.009	0.011			
All	1.23	0.013	0.040	0.070	0.117	0.157	0.200			

Note: Due to the very small computed flows, the peak flows have been documented above to three decimal places as a means of illustrating computed changes from pre-development to post-development. This level of detail is provided for information purposes only and should not be construed as an indication of the accuracy of the simulation model computations.

3.4.2 Substation

The existing conditions substation site drainage systems have been simulated using the methodology described in Section 3.3, and as per the land use described in Section 2.1.2 (ref. Figure 2.4). Simulated peak flows for the 2 through 100 year storm events are presented in Table 3.3.

The simulated peak flows presented in Table 3.3 will serve as basis for evaluating the expected change in peak flows under proposed conditions, as described and assessed in Section 3.5.2.

Table 3.3: Simulated Peak Flows for Substation – Existing Conditions (SCS 6-Hour Design Storm)

Location	Drainage	Sir	nulated Pea	k Flow (m³/s) for Return	Period (Yea	nrs)
	Area (ha)	2	5	10	25	50	100
S1	4.77	0.029	0.089	0.143	0.237	0.327	0.427
S2	1.26	0.007	0.020	0.033	0.051	0.070	0.092
All	6.03	0.035	0.109	0.176	0.287	0.395	0.516

Note: Due to the very small computed flows, the peak flows have been documented above to three decimal places as a means of illustrating computed changes from pre-development to post-development. This level of detail is provided for information purposes only and should not be construed as an indication of the accuracy of the simulation model computations.

3.5 Modelling Results (Proposed Conditions)

3.5.1 Operations & Maintenance Building

The proposed conditions drainage systems of the Operations and Maintenance (O&M) Building have been simulated using the methodology described in Section 3.3, and as per the land use described in Section 2.2.1 (ref. Figure 2.5). Simulated peak flows for the 2 through 100 year storm events are presented in Table 3.4, along with the calculated change in peak flows as compared to the results presented in Table 3.2.

Table 3.4: Simulated Peak Flows for O&M Site – Proposed Conditions (SCS 6-Hour Design Storm)

Location	Drainage	Sin	nulated Pea	k Flow (m³/s) for Return	Period (Yea	ars)
	Area (ha)	2	5	10	25	50	100
S1	0.12	0.001	0.004	0.008	0.013	0.017	0.021
S 2	0.40	0.013	0.031	0.046	0.066	0.082	0.098
S 3	0.66	0.006	0.020	0.035	0.058	0.078	0.100
S4	0.05	0.001	0.002	0.004	0.007	0.009	0.011
All	1.23	0.018	0.052	0.082	0.127	0.165	0.206
All	1.23	0.010	0.032	0.062	0.127	0.103	0.200
	Drainage			osed to Exist			100 0.021 0.098 0.100 0.011 0.206
Location							ws (m³/s)
	Drainage	Comparis	son of Propo	sed to Exist	ing Conditic	ons Peak Flo	ws (m³/s) 100
Location	Drainage Area (ha)	Comparis 2	on of Propo 5	osed to Exist	ing Conditic 25	ons Peak Flo 50	ws (m³/s) 100 0
Location S1	Drainage Area (ha)	Comparis 2 0	son of Propo 5	osed to Exist 10	ing Condition 25	ons Peak Flo 50	ws (m ³ /s) 100 0 +0.031
Location S1 S2	Drainage Area (ha) 0	2 0 +0.009	5 0 +0.017	0 +0.022	25 0 +0.026	ons Peak Flo 50 0 +0.029	ws (m ³ /s) 100 0 +0.031 0

Note: Due to the very small computed flows, the peak flows have been documented above to three decimal places as a means of illustrating computed changes from pre-development to post-development. This level of detail is provided for information purposes only and should not be construed as an indication of the accuracy of the simulation model computations.

The simulated results indicate a marginal increase in peak flows for subcatchment S2 (the O&M site) for all storm events (between 9 and 31 L/s), as would be expected given the conversion to a predominantly gravel surface. The simulated modelling results indicate that the overall increase in flow is reduced at the outlet of all drainage areas however, to increases of between 5 and 12 L/s which are considered to be minor and negligible. This is considered attributable to the flow attenuation and routing impacts of the two proposed swales, which would drain the site itself as well as external areas. The swales would have a relatively low overall slope, which contributes to the simulated flow attenuation. As noted previously, the preceding analyses also assume that the external agricultural lands have a similar runoff potential to grassed areas, which depending on the season and hydrologic condition of these areas, may not in fact be the case. Based on the preceding, no further on-site quantity controls are considered warranted for the O&M Building site.

3.5.2 Substation

The proposed conditions drainage systems of the substation site have been simulated using the methodology described in Section 3.3, and as per the land use described in Section 2.2.2 (ref. Figure 2.6). Simulated peak flows for the 2 through 100 year storm events are presented in Table 3.5, along with the calculated change in peak flows as compared to the results presented in Table 3.3.

 Table 3.5: Simulated Peak Flows for Substation – Proposed Conditions (SCS 6-Hour Design Storm)

Location	Drainage Area	Simula	ated Peak F	low (m³/s)	for Return	Period (Ye	ars)
	(ha)	2	5	10	25	50	100
S1	4.77	0.030	0.093	0.147	0.245	0.336	0.438
S2	1.26	0.010	0.028	0.042	0.067	0.089	0.114
All	6.03	0.040	0.115	0.186	0.292	0.388	0.498
			(D	1	<u> </u>	D 1 F1	/ 3/ >

Location	Drainage Area	Comparison of Proposed to Existing Conditions Peak Flows (m ³ /s)							
Location	(ha)	2	5	10	25	50	100		
S1	0	+0.001	+0.004	+0.004	+0.008	+0.009	+0.011		
S2	0	+0.003	+0.008	+0.009	+0.016	+0.019	+0.022		
All	0	+0.005	+0.006	+0.010	+0.005	-0.007	-0.018		

Note: Due to the very small computed flows, the peak flows have been documented above to three decimal places as a means of illustrating computed changes from pre-development to post-development. This level of detail is provided for information purposes only and should not be construed as an indication of the accuracy of the simulation model computations.

The simulated results indicate marginal increases in peak flows for both subcatchment S1 (which contains the proposed gravel access road) and subcatchment S2 (the substation site) for all storm events (between 1 and 22 L/s, depending on the storm event, with higher differences for less frequent, more formative storm events). Similar to the simulated results for the O&M building site, the results at the model outlet indicate that these simulated increases in flow are generally negated at the outlet of all drainage areas (increase of 10 L/s to a simulated decrease of 18 L/s). This is again considered attributable to the flow attenuation and routing impacts of the proposed swale, which would drain the larger external drainage area (S1). The swale would again have a relatively low overall slope (consistent with the general site topography), which contributes to the simulated flow attenuation. As noted previously, the preceding analyses also assume that the external agricultural lands have a similar runoff potential to grassed areas, which depending on the season and hydrologic condition of these areas, may not in fact be the case. Further, the stone and aggregate placed around the substation has been modeled as a hard-packed gravel surface, however in reality, would be expected to have minimal if any direct runoff potential given the larger pore space. Based on the preceding, no further on-site quantity controls are considered warranted for the substation site.

In addition to the preceding, the 24-hour, 50-year storm volume has been simulated for the substation site itself (S2), using the SCS Type-II Design Storm (118.1 mm of rainfall, based on the Point Pelee IDF data). This value is required to support the design of the double containment collection system, discussed further in Section 5.2. Based on the current modelling, the runoff volume in this case is 985 m³. This value is however likely conservative, as the transformer pit itself is somewhat smaller than the total boundary of subcatchment S2, and surface areas could be graded away accordingly. Thus, storage volumes could be calculated based on the actual area of the pit and directly draining area, and the previously noted 118.1 mm of rainfall, assuming full capture.

3.5.3 Wind Turbine Access Roads

The various proposed wind turbines to be constructed as part of the overall development will require access roads. It is understood that these access roads will be consistent with the access road proposed for the substation, namely gravel surfaced roadways, generally 5 m +\- in width to allow for periodic access for maintenance and repairs post-construction.

Based on the hydrologic modelling effort for the primary two sites (O&M Building and Substation) described in the previous sections, the hydrologic impacts of a conversion of agricultural land to gravel surface for these access roads (particularly given the nominal area involved) is also considered to be negligible. As discussed in Section 3.3, in some cases depending on the type of agricultural application and time of year, the runoff potential (as represented by the US SCS Curve Number) from the existing area may in fact be higher than under proposed conditions (gravel). Detailed hydrologic modelling of these sites is therefore not considered warranted, as no observable difference in surface runoff potential due to the construction of these access roads would be expected.

4.0 Hydraulic Assessment

4.1 Operations & Maintenance Building

As noted in previous sections, two (2) different swales have been recommended to convey flows from external drainage areas around the proposed O&M building site. This includes a western swale (subcatchment S1), and an eastern swale (subcatchments S3 and S5). Sizing calculations for the swales have been provided in Appendix A, based on Manning's equation for open channel (non-pressurized flow). The swale profile has been estimated based on matching existing surface grades at both the upstream and downstream limits (0.1 to 0.2%), and an assumed relatively shallow flow conveyance depth (0.3 m). Based on these calculations, and the simulated 100-year flow rates from Section 3.4, both swales should have a minimum bottom width of 1.0 m, and 3H:1V side slopes, resulting in a top width of approximately 2.8 m. If possible, it is recommended that a wider and deeper swale be constructed, to provide an additional measure of freeboard. The swales should be seeded following construction with a low maintenance seed mix; shorter grasses are generally preferred to avoid high density vegetation which could block flow conveyance.

4.2 Substation

As noted in previous sections, a bypass swale is necessary for the substation site in order to convey flows from external drainage areas around the proposed substation site. The external drainage area in this case (S1) is more sizeable (4.77 ha) than for the O&M Building site, and would necessitate a comparably larger swale dimension. Sizing calculations for the swale has been provided in Appendix A, based on Manning's equation for open channel (non-pressurized flow). The swale profile has been estimated based on matching existing surface grades at both the upstream and downstream limits (approximately 0.1%), and an assumed relatively shallow flow conveyance depth (0.3 m). Based on these calculations, and the simulated 100-year flow rates from Section 3.4, the swale should have a minimum bottom width of 5 m, and 3H:1V side slopes, resulting in a top width of approximately 6.8 m. If possible, it is recommended that a wider and deeper swale be constructed, to provide an additional measure of freeboard. The swale should be seeded following construction with a low maintenance seed mix; shorter grasses are generally preferred to avoid high density vegetation which could block flow conveyance.

4.3 Wind Turbine Access Roads

Based on the assessment/review outlined in Section 3.5.3, no hydrologic modelling is considered necessary for the wind turbine access roads, as no observable difference in surface runoff potential due to the creation of the gravel roadway surfaces would be expected. Notwithstanding, as part of the grading design, existing topography for the proposed access roads should be reviewed to confirm whether or not any existing watercourses or drainage features are accommodated and conveyed appropriately across the roadway, through the implementation of bypass swales and/or culverts as required.

5.0 Stormwater Quality

5.1 General Approach

Typically, the primary driver of negative stormwater quality impacts in development is the implementation of paved surfaces, particularly those subject to vehicular traffic. Paved surfaces tend to accumulate sediment and suspended solids, and along with this particulate matter related contaminants such as heavy metals. These contaminants are then washed off during rainfall events into stormwater collection systems, and ultimately into receivers. Stormwater quality management measures are then required to treat this increased contaminant loading.

No paving is proposed as part of the planned development at either the O&M building or substation sites, nor are the proposed access roads to the wind turbines proposed to be paved. As such, contaminant loadings are expected to be more comparable to pre-development conditions than paved type surfaces. In all cases, hard-packed gravel is proposed for the majoirty of the site, however even such gravel surfaces would still promote infiltration and limit the buildup, and washoff of contaminants. Further, discharge from these gravel surfaces would either be directed to grassed/vegetated swales along the perimeter or existing agricultural land, which would further promote infiltration and settling of any generated sediment.

As a further measure for on-site quality control at the two primary sites (O&M Site and Substation), it is recommended the vegetated buffers and filter strips be implemented around the perimeter of the development areas, including around the edges of the proposed grassed swale systems. These measures would further promote filtration and capture of any potential sedimentation and contaminants of concern.

Based on the preceding, stormwater quality is not expected to be a major concern, given the lack of paving and promotion of infiltration, through gravel surfaces, adjacent vegetated/grassed swales and agriculatural land, and for the two (2) primary sites, vegetated buffers and filter strips. No additional stormwater quality controls are considered warranted in this case for any of the proposed development locations.

5.2 Substation – Transformer Containment

A "double containment system" is proposed for the transformer within the substation site. A general outline of this system is as follows, and is consistent with the approved approach employed at similar sites by Wood Power & Process:

- A "double containment system" will be implemented for the transformer at the station. In addition to "first stage" of containment, namely the transformer enclosure (Conserver, Tank, etcetera), a "second Stage" of containment will be in the form of transformer containment pit system.
- The spill containment facility serving the transformer substation shall have a minimum volume equal to the volume of transformer oil and lubricants plus the volume equivalent to providing a minimum 24-hour duration, 50-year return storm capacity for the stormwater drainage area around the transformer under normal operating conditions (985 m³, or calculated using the 50-year rainfall of 118.1 mm). The containment area shall have:
 - o an impervious floor with walls typically consisting of reinforced concrete or impervious plastic liners, sloped toward an outlet oil control device, allowing for a freeboard of 0.25 metres terminating approximately 0.30 metres above grade to prevent external stormwater flows from entering the facility. The facility shall have a minimum of 300 mm layer of crushed stone (19mm to 38mm in diameter) within, all as needed in accordance to site specific conditions. and final design parameters; or

wood.

- o a permeable floor with impervious plastic walls and around the transformer pad; equipped with subsurface drainage with a minimum 50mm diameter drain installed on a sand layer sloped toward an outlet for sample collection purposes; designed with an oil absorbent material on floor and walls and allowing for a freeboard of 0.25 metres terminating approximately 0.30 metres above grade to prevent external stormwater flows from entering the facility. The facility's berm shall be designed as needed in accordance to site specific conditions and 'the facility shall have a minimum 300mm layer of crushed stones (19mm to 38mm in diameter) on top of the system, as needed in accordance to site specific conditions and final design parameters.
- The spill containment facility shall be equipped with an oil detection system, it also shall have a minimum of two (2) PVC pipes (or equivalent material) 50mm diameter to allow for visual inspection of water accumulation. One pipe must be installed half way from the transformer pad to vehicle access route.
- Drainage from the transformer pit would be removed by either manually or automatically operating
 a sump pump to discharge the liquid. In either case, an oil/grease sensor would be mounted on the
 pump to detect any oil/grease in the liquid. The operators of the facility shall implement a REA
 monitoring program for oil detection. If no oil/grease is detected in the liquid, discharge would be
 via the stormwater collection system and a clean stormwater outlet from the containment facility.

6.0 Erosion and Sediment Control and Operations and Maintenance

6.1 Erosion and Sediment Control during Construction

Erosion and Sediment Controls must be implemented during construction in order to prevent the off-site movement of sediment, and to avoid filling and contaminating proposed stormwater management features, particularly proposed swales. Measures that should be implemented during construction include, but are not limited to:

- Establishing sediment control fence along the site perimeter, particularly the downstream side;
- Implementing rock check dams or straw bale check dams at the overall site outlet;
- Ensuring bare surfaces are re-seeded as quickly as possible following construction, and ideally
 undertaking construction during warm-weather periods when germination and growth of seeding
 would be expected; and
- Ensure regular inspection and maintenance of all erosion and sediment controls throughout the construction period.

6.2 Long Term Operations and Maintenance

All infrastructure, including stormwater management measures, will require periodic maintenance to ensure continued function and proper operation. Limited SWM controls are proposed for the current site, given the relatively minimal associated change in the site. Notwithstanding, a series of vegetated/grassed swales and vegetated buffers/filter strips have been proposed as part of the current SWM strategy for both sites. Typical operations and maintenance activities for these features include:

- Annual inspection of SWM measures
 - Condition of the vegetation (minimal growth that may lead to erosion, or excessive growth that may lead to decreased conveyance capacity);
 - Signs of erosion; and
 - Signs of sedimentation (confirmation that the originally designed conveyance depths and widths remain available).
- Maintaining a log book of inspection observations and corrective actions as required

7.0 Summary and Conclusions

A SWM assessment has been completed for the O&M Building and Substation sites, both components of the proposed Romney Wind Development. The current SWM assessment has focused on impacts and control measures for two (2) primary sites, namely the Operations and Maintenance Building, and the Substation site. Based on an assessment of the hydrologic change associated with the various gravel access roads necessary for individual wind turbine installations, little to no deviation from the current runoff regime would be expected. As part of the grading design for the roadways, existing low points (watercourses or drainage features) should be confirmed to ensure adequate conveyance (swale and/or culvert) as required.

Hydrologic modelling has been completed to assess the simulated changes in runoff (peak flows) under proposed conditions (as compared to existing conditions) at both of the preceding sites. The results indicate that simulated changes are negligible in both cases, given the overall minor changes in land use and lack of impermeable surfaces (other than roof areas for the O&M site, which would discharge to the pervious ground surface). Some flow attenuation would be provided by the proposed flow bypass swales, which would be used to direct external flows around both development sites. Based on the preceding analysis, no quantity controls are considered necessary or warranted.

Further to the preceding, given the lack of paved surfaces in any proposed development location, stormwater quality impacts are not expected to be a concern. Gravel and grassed areas will continue to promote infiltration and minimize sediment and contaminant build-up and wash-off, as is expected for urbanized paved surfaces. For the two (2) primary sites (O&M Site and Substation) the previously proposed grassed/vegetated swales will further serve to settle and infiltrate stormwater, reducing any contaminant concerns. Further, vegetated buffers and filter strips should be considered around the site perimeter for the two (2) sites, and adjacent to conveyance swales, in order to further attenuate and filter stormwater.

A "double containment" system will be implemented for the transformer at the substation site, based on the previously approved design and methods employed by Wood Power & Process at other similar sites.

Recommended Erosion and Sediment controls for the construction period have been provided as part of the current reporting, along with long term recommendations for operations and maintenance activities. These activities should focus on periodic inspections and repairs to areas showing signs of erosion, minimal or excessive vegetation growth, or excess sedimentation.

Appendix A: Calculations and Modelling Files

i df_v2-3_2014_12_21_613_0N_613P001_P0I NT_PELEE_CS. txt Envi ronment Canada/Envi ronnement Canada

Short Duration Rainfall Intensity-Duration-Frequency Data Données sur l'intensité, la durée et la fréquence des chutes de pluie de courte durée

Gumbel - Method of moments/Méthode des moments

2014/12/21

POINT PELEE CS ON 613P001

(composite) Latitude: 41 57'N Longitude: 82 31'W El evati on/Al ti tude: 176

Years/Années: 1975 - 2004 # Years/Années :

Table 1: Annual Maximum (mm)/Maximum annuel (mm)

Year	5 min	10 min	15 min	30 min	1 h	2 h	6 h	12 h	24 h
Année 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 2002 2003	7. 9 9. 1 10. 2 4. 6 8. 1 11. 7 8. 6 13. 4 10. 5 7. 4 10. 5 7. 4 10. 5 7. 4 12. 2 8. 6 9. 9 14. 3 17. 6 13. 0	14. 0 13. 2 17. 3 9. 1 12. 1 17. 8 13. 8 11. 3 17. 2 12. 4 9. 9 15. 2 9. 9 20. 4 14. 1 14. 9 9. 4 20. 4 22. 4 8. 6 19. 2	14. 7 17. 0 22. 9 11. 4 15. 2 18. 8 15. 8 24. 9 15. 0 18. 7 17. 0 13. 3 18. 8 10. 6 16. 7 15. 4 12. 5 21. 0 23. 2 9. 6 23. 6	15. 5 20. 8 34. 5 16. 0 16. 6 25. 7 18. 8 21. 6 19. 9 21. 9 21. 9 21. 3 13. 4 51. 3 22. 2 23. 4 12. 6 41. 8	31. 0 22. 4 51. 6 16. 0 16. 8 35. 0 22. 1 34. 7 28. 1 22. 2 19. 9 24. 0 29. 6 15. 6 63. 2 36. 7 21. 2 36. 5 21. 2 23. 4 15. 6 61. 0	34. 3 32. 3 51. 6 21. 2 16. 8 37. 3 22. 7 35. 9 32. 5 25. 7 21. 7 37. 7 38. 8 85. 8 50. 5 24. 3 30. 2 20. 8 63. 4	34. 3 37. 8 53. 6 23. 9 26. 1 41. 6 29. 8 35. 9 37. 5 29. 4 29. 5 102. 5 77. 9 40. 1 75. 7 26. 1 41. 8 49. 4 65. 4	34. 3 48. 3 53. 6 34. 5 49. 2 41. 8 34. 4 36. 4 44. 6 33. 0 29. 8 48. 4 81. 1 37. 0 110. 5 106. 3 57. 0 83. 4 49. 0 65. 4	45. 5 49. 3 53. 6 37. 0 58. 6 70. 9 50. 9 36. 4 54. 8 33. 0 29. 9 51. 4 40. 0 113. 6 106. 4 85. 8 85. 8 38. 2 56. 0 72. 6
# Yrs.	22	22	22	22	22	22	22	22	22
Années Mean	10. 2	14. 6	17. 6	23. 2	29. 4	35. 6	45. 9	53. 0	58. 4
Moyenne Std. Dev.	3. 1	4. 1	5. 2	9. 3	13. 7	16. 8	20. 8	23. 2	23. 0
Écart-type Skew. Di ssymétri e	0. 56	0. 22	0. 70	1. 73	1. 38	1. 51	1. 29	1. 40	1. 12
Kurtosis	3. 39	2. 34	3. 75	6. 19	4. 59	5. 76	4. 43	4. 56	3. 93

^{*-99.9} Indicates Missing Data/Données manquantes

idf_v2-3_2014_12_21_613_0N_613P001_P0INT_PELEE_CS.txt

Table 2a: Return Period Rainfall Amounts (mm) Quantité de pluie (mm) par période de retour

Durati on/Durée	2 yr/ans	5 yr/ans	10 yr/ans	25 yr/ans	50 yr/ans	100 yr/ans	#Years Années
5 min	9.7	12. 4	14. 2	16. 5	18. 2	19. 9	22
10 min	13. 9	17. 6	20. 0	23. 0	25. 3	27. 5	22
15 min	16. 7	21. 3	24. 3	28. 1	31. 0	33.8	22
30 min	21. 7	29. 9	35. 4	42. 3	47. 4	52. 5	22
1 h	27. 2	39. 3	47. 4	57. 5	65. 1	72. 5	22
2 h	32.8	47.7	57. 5	70. 0	79. 2	88. 4	22
6 h	42. 5	60.8	73. 0	88. 4	99. 8	111. 1	22
12 h	49. 2	69. 7	83. 2	100. 3	113. 1	125. 7	22
24 h	54.6	75.0	88. 5	105.5	118. 1	130. 7	22

Table 2b:

Return Period Rainfall Rates (mm/h) - 95% Confidence limits Intensité de la pluie (mm/h) par période de retour - Limites de confiance de 95%

Durati on/Durée			10 vr/ans		50 100 yr/ans yr/ans	#Years Années
5 min	³ 116. 4	149. 2	³ 170. 8	198. 2	218. 6 238. 7 +/- 52. 2 +/- 60. 8	22 22
10 min	83. 5	105. 4	119. 9	138. 2		22 22
15 min	66. 9	85. 2	97. 3	112. 5	123. 8 135. 1	22
30 min	43. 4	59. 9	70.8	84. 6		22 22
1 h	27. 2	39. 3	47. 4	57. 5		22 22
2 h	16. 4	23.8	28. 8	35. 0		22 22
6 h		+/- 5.4	+/- 7.3 12.2		+/- 11.8 +/- 13.8 16.6 18.5	22 22
12 h			+/- 3.0 6.9		+/- 4.9 +/- 5.7 9.4 10.5	22 22
24 h	+/- 0.7	+/- 1.2	+/- 1.7	+/- 2.3	+/- 2.7 +/- 3.2 4.9 5.4	22 22
24 11					+/- 1.4 +/- 1.6	22

Table 3: Interpolation Equation / Équation d'interpolation: R = A*T^B

R = Interpolated Rainfall rate (mm/h)/Intensité interpolée de la pluie (mm/h) RR = Rainfall rate (mm/h) / Intensité de la pluie (mm/h) T = Rainfall duration (h) / Durée de la pluie (h)

Stati sti cs/Stati sti ques 2 5 10 25 yr/ans yr/ans yr/ans yr/ans yr/ans Mean of RR/Moyenne de RR 53.5 62.0 72.6 80.5 40.8 Page 2

6 HOUR SCS DESIGN STORM (IDF DATA FROM POINT PELEE CS 613P001)

1 otal Depth	Total Depth	42.5	60.8	73	88.4	99.8	111.1
---------------------	-------------	------	------	----	------	------	-------

Ī	*Time	*% Inc			Depth/Ind	rement		
	Ending	% IIIC	2	5	10	25	50	100
	0	0	0					
30	0.5	0.02	0.85	1.216	1.46	1.768	1.996	2.222
60	1	0.03	1.275	1.824	2.19	2.652	2.994	3.333
90	1.5	0.03	1.275	1.824	2.19	2.652	2.994	3.333
120	2	0.05	2.125	3.04	3.65	4.42	4.99	5.555
150	2.5	0.06	2.55	3.648	4.38	5.304	5.988	6.666
165	2.75	0.15	6.375	9.12	10.95	13.26	14.97	16.665
180	3	0.39	16.575	23.712	28.47	34.476	38.922	43.329
210	3.5	0.11	4.675	6.688	8.03	9.724	10.978	12.221
240	4	0.05	2.125	3.04	3.65	4.42	4.99	5.555
270	4.5	0.04	1.7	2.432	2.92	3.536	3.992	4.444
300	5	0.03	1.275	1.824	2.19	2.652	2.994	3.333
360	6	0.04	1.7	2.432	2.92	3.536	3.992	4.444

^{*} ref Design Chart 1.05 MTO Drainage Manutal

	Intensity (mm/hr)										
Time Step	2	5	10	25	50	100					
10	1.70	2.43	2.92	3.54	3.99	4.44					
20	1.70	2.43	2.92	3.54	3.99	4.44					
30	1.70	2.43	2.92	3.54	3.99	4.44					
40	2.55	3.65	4.38	5.30	5.99	6.67					
50	2.55	3.65	4.38	5.30	5.99	6.67					
60	2.55	3.65	4.38	5.30	5.99	6.67					
70	2.55	3.65	4.38	5.30	5.99	6.67					
80	2.55	3.65	4.38	5.30	5.99	6.67					
90	2.55	3.65	4.38	5.30	5.99	6.67					
100	4.25	6.08	7.30	8.84	9.98	11.11					
110	4.25	6.08	7.30	8.84	9.98	11.11					
120	4.25	6.08	7.30	8.84	9.98	11.11					
130	5.10	7.30	8.76	10.61	11.98	13.33					
140	5.10	7.30	8.76	10.61	11.98	13.33					
150	5.10	7.30	8.76	10.61	11.98	13.33					
160	25.50	36.48	43.80	53.04	59.88	66.66					
170	45.90	65.66	78.84	95.47	107.78	119.99					
180	66.30	94.85	113.88	137.90	155.69	173.32					
190	9.35	13.38	16.06	19.45	21.96	24.44					
200	9.35	13.38	16.06	19.45	21.96	24.44					
210	9.35	13.38	16.06	19.45	21.96	24.44					
220	4.25	6.08	7.30	8.84	9.98	11.11					
230	4.25	6.08	7.30	8.84	9.98	11.11					
240	4.25	6.08	7.30	8.84	9.98	11.11					
250	3.40	4.86	5.84	7.07	7.98	8.89					
260	3.40	4.86	5.84	7.07	7.98	8.89					
270	3.40	4.86	5.84	7.07	7.98	8.89					
280	2.55	3.65	4.38	5.30	5.99	6.67					
290	2.55	3.65	4.38	5.30	5.99	6.67					
300	2.55	3.65	4.38	5.30	5.99	6.67					
310	1.70	2.43	2.92	3.54	3.99	4.44					
320	1.70	2.43	2.92	3.54	3.99	4.44					
330	1.70	2.43	2.92	3.54	3.99	4.44					
340	1.70	2.43	2.92	3.54	3.99	4.44					
350	1.70	2.43	2.92	3.54	3.99	4.44					
360	1.70	2.43	2.92	3.54	3.99	4.44					

TABLE A1 - BASE HYDROLOGIC PARAMETERIZATION (O&M BUILDING)

Land Use	CN (AMC-II)	Initial Abstraction (mm)
Forest	79	7
Row Crops	80	5
Grass	80	5
Gravel	91	2
Rooftop/Paved	98	1

TABLE A2 - CALCULATION OF SCS CURVE NUMBER AND IMPERVIOUSNESS (O&M BUILDING)

Land Use	Sub	Total Area (ha)	Forest (ha)	Row Crops (ha)	Grass (ha)	Gravel (ha)	Rooftop/Paved - Disconnected (ha)	Rooftop/Paved/Open Water - Connected (ha)	Imperviousness (%)	CN Pervious Area (AMC-II)	IA Pervious Area (mm)
	S1	0.12	0.00	0.12	0.0000	0.00	0.0019	0.000	1.5%	80.0	5.0
Existing	S2	0.40	0.00	0.40	0.0000	0.00	0.0000	0.000	0.0%	80.0	5.0
EXISTING	S3	0.66	0.00	0.66	0.0000	0.00	0.0000	0.000	0.0%	80.0	5.0
	S4	0.05	0.00	0.00	0.0528	0.00	0.0000	0.000	0.0%	80.0	5.0
	S1	0.12	0.00	0.12	0.0000	0.00	0.0000	0.000	0.0%	80.0	5.0
Dronocod	S2	0.40	0.04	0.00	0.0213	0.33	0.0070	0.000	1.7%	89.2	2.7
Proposed	S3	0.66	0.00	0.66	0.0000	0.00	0.0000	0.000	0.0%	80.0	5.0
	S4	0.05	0.00	0.00	0.0488	0.00	0.0040	0.000	0.0%	80.0	5.0

TABLE A3 - CALCULATION OF OVERLAND FLOW LENGTH AND SLOPE (O&M BUILDING)

Land Use	Sub	Total Area (ha)	Slope (%)	Channel Length (m)	Calculated Overland Flow Length (m)	Applied Overland Flow Length (m)
Existing	S1	0.12	0.10	27	27	30
	S2	0.40	0.10	81	29	30
EXISTING	S3	0.66	0.10	114	34	35
	S4	0.05	0.10	24	13	20
	S1	0.12	0.10	27	27	30
Proposed	S2	0.40	0.10	81	29	30
Proposed	S3	0.66	0.10	114	34	35
	S4	0.05	0.10	24	13	20

TABLE A4 - BASE HYDROLOGIC PARAMETERIZATION (SUBSTATION)

Land Use	CN (AMC-II)	Initial Abstraction (mm)
Forest	79	7
Row Crops	80	5
Grass	80	5
Gravel	91	2
Rooftop/Paved	98	1

TABLE A5 - CALCULATION OF SCS CURVE NUMBER AND IMPERVIOUSNESS (SUBSTATION)

Land Use	Sub	Total Area (ha)	Forest (ha)	Row Crops (ha)	Grass (ha)	Gravel (ha)	Rooftop/Paved - Disconnected (ha)	Rooftop/Paved/Open Water - Connected (ha)	Imperviousness (%)	CN Pervious Area (AMC-II)	IA Pervious Area (mm)
Existing	S1	4.77	0.00	4.77	0.0000	0.00	0.0000	0.000	0.0%	80.0	5.0
EXISTING	S2	1.26	0.00	1.26	0.0000	0.00	0.0000	0.000	0.0%	80.0	5.0
Proposed	S1	4.77	0.00	4.55	0.0000	0.22	0.0000	0.000	0.0%	80.5	4.9
Proposed	S2	1.26	0.00	0.79	0.0000	0.47	0.0000	0.000	0.0%	84.1	3.9

TABLE A6 - CALCULATION OF OVERLAND FLOW LENGTH AND SLOPE (SUBSTATION)

Land Use	Sub	Total Area (ha)	Slope (%)	Channel Length (m)	Calculated Overland Flow Length (m)	Applied Overland Flow Length (m)
Existing	S1	4.77	0.10	420	67	70
Existing	S2	1.26	0.10	85	87	90
Proposed	S1	4.77	0.10	420	67	70
Proposed	S2	1.26	0.10	85	87	90

SubStn_FromLi dar_EX. rpt

EXISTING CONDITIONS - SUBSTATION

EPA STORM WATER MA			(Buil		-		

Element Count							
Number of rain gad Number of subcatch Number of nodes Number of links Number of pollutar Number of land use	nments 2 1 0 nts 0						

**************************************	Data Source			Data Type	Recordi Interva	ng I	
POI NTPELEE	6hr_SCSII_1	00Y		I NTENSI TY			

Name tlet	Area	Wi dth	%Imperv	%SI ope	Rain Gag	e	
 S1	4. 77	 681. 10	0. 00	0. 1000	POI NTPEL	 EE	 0F
S2	1. 26	140. 53	0.00	0. 1000	POI NTPEL	EE	OF

Node Summary				Marr	Danadad	Furt a remail	
Name	Туре	I	nvert El ev.	мах. Depth	Area	Inflow	
0F1	OUTFALL		179. 03	0. 00	0. 0		

Transect Summary							
Transect Overland	Flow						
Area: 0. 0007 0. 0234 0. 0677	4 0. 0309	0. 0059 0. 0390 0. 0889	0. 0105 0. 0478 0. 1007	0. 016 0. 057 0. 113	1		

Hrad:	0. 3827 0. 4936 0. 6400 0. 8312	0. 4035 0. 5190 0. 6765 0. 8721	SubStn_FromL 0. 4249 0. 5459 0. 7138 0. 9138	i dar_EX. rpt 0. 4470 0. 5744 0. 7521 0. 9565	0. 4698 0. 6044 0. 7912 1. 0000
III au.	0. 0220	0. 0440	0. 0660	0. 0880	0. 1101
	0. 1428	0. 1739	0. 2036	0. 2323	0. 2601
	0. 2873	0. 3138	0. 3399	0. 3656	0. 3909
	0. 4159	0. 4406	0. 4651	0. 4895	0. 5136
	0. 5445	0. 5751	0. 6052	0. 6350	0. 6644
	0. 6935	0. 7223	0. 7508	0. 7790	0. 8070
	0. 8243	0. 8419	0. 8597	0. 8778	0. 8961
	0. 9135	0. 9292	0. 9436	0. 9571	0. 8318
	0. 8581	0. 8843	0. 9102	0. 9360	0. 9616
	0. 9869	1. 0121	1. 0372	1. 0620	1. 0000
Width:	0. 0300	0. 0600	0. 0900	0. 1200	0. 1500
	0. 1640	0. 1780	0. 1920	0. 2060	0. 2200
	0. 2340	0. 2480	0. 2620	0. 2760	0. 2900
	0. 3040	0. 3180	0. 3320	0. 3460	0. 3600
	0. 3690	0. 3780	0. 3870	0. 3960	0. 4050
	0. 4140	0. 4230	0. 4320	0. 4410	0. 4500
	0. 4650	0. 4800	0. 4950	0. 5100	0. 5250
	0. 5600	0. 5950	0. 6300	0. 6650	0. 8000
	0. 8200	0. 8400	0. 8600	0. 8800	0. 9000
	0. 9200	0. 9400	0. 9600	0. 9800	1. 0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options

Flow Units CMS Process Models: Rainfall/Runoff YES RDII NO Snowmel t NO Groundwater NO

**************************************	Volume hectare-m	Depth mm

Total Precipitation	0. 670	111. 100
Evaporati on Loss	0. 000	0.000
Infiltration Loss	0. 264	43.842
Surface Runoff	0. 367	60. 772
Final Storage	0. 040	6. 558
Continuity Error (%)	-0. 065	

Page 2

SubStn_FromLi dar_EX.rpt

******	Vol ume	Vol ume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0. 367	3.666
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0. 367	3.666
Flooding Loss	0.000	0.000
Evaporațion Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	0.000	

Peak Runoff Runoff Coeff Subcatchment CMS	Total	Total	Total	Total	Total	Total
	Precip	Runon	Evap	Infil	Runoff	Runoff
	mm	mm	mm	mm	mm	10^6 Itr
S1 0.43 0.549 S2 0.09 0.540	111. 10 111. 10	0. 00 0. 00	0. 00 0. 00	43. 84 43. 84	60. 99 59. 94	2. 91 0. 76

Analysis begun on: Thu Oct 04 22:49:01 2018 Analysis ended on: Thu Oct 04 22:49:01 2018 Total elapsed time: < 1 sec

SubStn_FromLi dar_FUT.rpt

PROPOSED CONDITIONS - SUBS	STATI ON	SLIE
----------------------------	----------	------

EPA STORM WATER MA	- SUBSTATION SI		5. 1 (Bui	ld 5. 1. 012)) -		
************ El ement Count ***********							
Number of rain gag Number of subcatch Number of nodes Number of links Number of pollutan Number of land use	ments 2 3 2 nts 0						

Name	Data Source			Data Type	Recordi n I nterval	g	
POINTPELEE	6hr_SCSII_10	00Y		INTENSITY	10 min.	-	

Name utlet	Area	Wi dth	%Imperv	%SI ope	Rain Gage		
 S1	4. 77	681. 10	0. 00	0. 1000	POI NTPELE	 E	J2
S2	1. 26	140. 53	0. 00	0. 1000	POI NTPELE	E	OF1

Name	Туре		ivert I ev.	Max. I Depth		External Inflow	
J1 J2 0F1	JUNCTI ON JUNCTI ON OUTFALL	17	9. 25 9. 15 9. 03	0. 50 0. 50 0. 50	0. 0 0. 0 0. 0		
*********** Link Summary ********							
Name F oughness	rom Node	To Node	-	Туре	Leng	th %SI	ope
				CONDULT		0 0 7	1024
. 0350	2	J2 0F1		CONDUIT CONDUIT	80 113		1236 1055
. 0350	_		e 1		113	. 5 0.	.000

SubStn_FromLi dar_FUT.rpt

Condui t	Shape	Full Depth	Ful I Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	TRAPEZOI DAL	0. 50	3. 25	0. 40	8. 00	1	1. 77
C2	TRAPEZOI DAL	0. 50	3. 25	0. 40	8. 00	1	1. 63

Transect Summary

Transect OverlandFlow Area:

0. 0007 0. 0234 0. 0671 0. 1262 0. 2006 0. 2867 0. 3827 0. 4936 0. 6400 0. 8312	0. 0026 0. 0309 0. 0777 0. 1399 0. 2171 0. 3051 0. 4035 0. 5190 0. 6765 0. 8721	0. 0059 0. 0390 0. 0889 0. 1542 0. 2339 0. 3239 0. 4249 0. 5459 0. 7138 0. 9138	0. 0105 0. 0478 0. 1007 0. 1691 0. 2511 0. 3431 0. 4470 0. 5744 0. 7521 0. 9565	0. 0165 0. 0571 0. 1132 0. 1846 0. 2687 0. 3626 0. 4698 0. 6044 0. 7912 1. 0000
0 0000	0 0440	0.0440	0.0000	0 1101
0. 0220 0. 1428 0. 2873 0. 4159 0. 5445 0. 6935 0. 8243 0. 9135 0. 8581 0. 9869	0. 0440 0. 1739 0. 3138 0. 4406 0. 5751 0. 7223 0. 8419 0. 9292 0. 8843 1. 0121	0. 0660 0. 2036 0. 3399 0. 4651 0. 6052 0. 7508 0. 8597 0. 9436 0. 9102 1. 0372	0. 0880 0. 2323 0. 3656 0. 4895 0. 6350 0. 7790 0. 8778 0. 9571 0. 9360 1. 0620	0. 1101 0. 2601 0. 3909 0. 5136 0. 6644 0. 8070 0. 8961 0. 8318 0. 9616 1. 0000
0.0000	0.0400	0.0000	0 1000	0 1500
0. 0300 0. 1640 0. 2340 0. 3040 0. 3690 0. 4140 0. 4650 0. 5600 0. 8200 0. 9200	0. 0600 0. 1780 0. 2480 0. 3180 0. 3780 0. 4230 0. 4800 0. 5950 0. 8400 0. 9400	0. 0900 0. 1920 0. 2620 0. 3320 0. 3870 0. 4320 0. 4950 0. 6300 0. 8600 0. 9600	0. 1200 0. 2060 0. 2760 0. 3460 0. 3960 0. 4410 0. 5100 0. 6650 0. 8800 0. 9800	0. 1500 0. 2200 0. 2900 0. 3600 0. 4050 0. 4500 0. 5250 0. 8000 0. 9000
	0. 0234 0. 0671 0. 1262 0. 2006 0. 2867 0. 3827 0. 4936 0. 6400 0. 8312 0. 0220 0. 1428 0. 2873 0. 4159 0. 5445 0. 6935 0. 8243 0. 9135 0. 8243 0. 9135 0. 9869 0. 0300 0. 1640 0. 2340 0. 3040 0. 3690 0. 4140 0. 4650 0. 5600 0. 8200	0. 0234 0. 0309 0. 0671 0. 0777 0. 1262 0. 1399 0. 2006 0. 2171 0. 2867 0. 3051 0. 3827 0. 4035 0. 4936 0. 5190 0. 6400 0. 6765 0. 8312 0. 8721 0. 0220 0. 0440 0. 1428 0. 1739 0. 2873 0. 3138 0. 4159 0. 4406 0. 5445 0. 5751 0. 6935 0. 7223 0. 8243 0. 8419 0. 9135 0. 9292 0. 8581 0. 8843 0. 9869 1. 0121 0. 0300 0. 0600 0. 1640 0. 1780 0. 2340 0. 2480 0. 3040 0. 3180 0. 3690 0. 3780 0. 4450 0. 4800 0. 5600 0. 5950 0. 8200 0. 8400	0. 0234 0. 0309 0. 0390 0. 0671 0. 0777 0. 0889 0. 1262 0. 1399 0. 1542 0. 2006 0. 2171 0. 2339 0. 2867 0. 3051 0. 3239 0. 3827 0. 4035 0. 4249 0. 4936 0. 5190 0. 5459 0. 6400 0. 6765 0. 7138 0. 8312 0. 8721 0. 9138 0. 0220 0. 0440 0. 0660 0. 1428 0. 1739 0. 2036 0. 2873 0. 3138 0. 3399 0. 4159 0. 4406 0. 4651 0. 5445 0. 5751 0. 6052 0. 6935 0. 7223 0. 7508 0. 8243 0. 8419 0. 8597 0. 9135 0. 9292 0. 9436 0. 8581 0. 8843 0. 9102 0. 9869 1. 0121 1. 0372 0. 0300 0. 0600 0. 0900 0. 1640 0. 1780 0. 1920 0. 2340 0. 2480 0. 2620 0. 3040 0. 3180 0. 3320	0. 0234 0. 0309 0. 0390 0. 0478 0. 0671 0. 0777 0. 0889 0. 1007 0. 1262 0. 1399 0. 1542 0. 1691 0. 2006 0. 2171 0. 2339 0. 2511 0. 2867 0. 3051 0. 3239 0. 3431 0. 3827 0. 4035 0. 4249 0. 4470 0. 4936 0. 5190 0. 5459 0. 5744 0. 6400 0. 6765 0. 7138 0. 7521 0. 8312 0. 8721 0. 9138 0. 9565 0. 0220 0. 0440 0. 0660 0. 0880 0. 1428 0. 1739 0. 2036 0. 2323 0. 2873 0. 3138 0. 3399 0. 3656 0. 4159 0. 4406 0. 4651 0. 4895 0. 5445 0. 5751 0. 6052 0. 6350 0. 6935 0. 7223 0. 7508 0. 7790 0. 8243 0. 8419 0. 8597 0. 8778 0. 9135 0. 9292 0. 9436 0. 9571

Flow Units CMS

SubStn_FromLi dar_FUT.rpt

Process Models: Rainfall/Runoff RDII Snowmelt Groundwater Flow Routing Ponding Allowed Water Quality Infiltration Method Flow Routing Method Starting Date Ending Date Antecedent Dry Days Report Time Step Wet Time Step Dry Time Step Variable Time Step Variable Time Step Maximum Trials Number of Threads Head Tolerance	YES NO NO NO YES NO NO CURVE_NUMBER DYNWAVE 12/01/2016 00: 12/01/2016 12: 0. 0 00: 01: 00 00: 05: 00 00: 05: 00 5. 00 sec YES 8 1 0. 001500 m	
**************************************	Volume hectare-m	Depth mm
Runoff Quantity Continuity ******** Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0. 670 0. 000 0. 250 0. 382 0. 039 -0. 067	111. 100 0. 000 41. 430 63. 316 6. 429
**************************************	Volume hectare-m	Volume 10^6 ltr
Dry Weather Inflow	0. 000 0. 382 0. 000 0. 000 0. 000 0. 381 0. 000 0. 000 0. 000 0. 000 0. 001 -0. 023	0. 000 3. 819 0. 000 0. 000 0. 000 3. 809 0. 000 0. 000 0. 000 0. 000 0. 001

SubStn_FromLi dar_FUT.rpt

******* Routing Time Step Summary

Minimum Time Step Average Time Step Maximum Time Step Percent in Steady State 4.50 sec 5.00 sec 5.00 sec 0.00 Average Iterations per Step: 2.00 Percent Not Converging 0.00

Subcatchment Runoff Summary

Peak Runoff Runoff Coeff Subcatchment CMS	Total	Total	Total	Total	Total	Total
	Precip	Runon	Evap	Infil	Runoff	Runoff
	mm	mm	mm	mm	mm	10^6 Itr
S1 0. 44 0. 558 S2 0. 11 0. 616	111. 10 111. 10	0. 00 0. 00	0. 00	42. 90 35. 90	61. 96 68. 42	2. 95 0. 87

***** Node Depth Summary

Node	Туре		Depth	HGL	Time of Max Occurrence days hr:min	Reported Max Depth Meters
J1	JUNCTI ON	0. 02	0. 16	179. 41	0 03: 23	0. 16
J2	JUNCTI ON	0. 08	0. 26	179. 41	0 03: 22	0. 26
0F1	OUTFALL	0. 02	0. 08	179. 11	0 03: 22	0. 08

Node Inflow Summary

Total Maximum Maximum Lateral FI ow Total Time of Max Inflow Lateral Inflow Bal ance Inflow Inflow Occurrence Vol ume Vol ume Error Node Type CMS CMS days hr: min 10^6 Itr 10^6 Itr Percent

SubStn_FromLi dar_FUT.rpt

J1	JUNCTI ON	0.000	0. 071	0 03:09	0	0. 0374
0. 685 J2	JUNCTI ON	0. 438	0. 438	0 03:10	2. 95	2. 99
0. 321 0F1 0. 000	OUTFALL	0. 114	0. 498	0 03: 21	0. 865	3. 81

No nodes were surcharged.

No nodes were flooded.

Outfall Node	Flow Freq Pcnt	Avg Flow CMS	Max Flow CMS	Total Volume 10^6 ltr
0F1	80. 81	0. 109	0. 498	3. 809
Svstem	80. 81	0. 109	0. 498	3. 809

Maximum Time of Max Maxi mum Max/ Max/ Occurrence | Veloc | Ful l Full |Flow| Li nk CMS days hr: min Type m/sec Flow Depth CONDUI T 0. 071 0. 393 0 03: 09 0. 10 0 03: 22 0. 41 C1 0.04 0.42 Č2 0.35 0. 24

Condui t	Adj usted /Actual Length		Up	Down		Sup	Up	Down	Norm	Inlet Ctrl
C1 C2	1. 00 1. 00	0. 22 0. 22			0. 75 0. 78					

SubStn_FromLi dar_FUT. rpt

******* Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Thu Oct O4 22: 49: 17 2018 Analysis ended on: Thu Oct O4 22: 49: 17 2018 Total elapsed time: < 1 sec

OM_FromLi dar_EX. rpt

EXISTING CONDITIONS - 0&M SITE

Number of rain gag Number of subcatch Number of nodes Number of links Number of pollutan Number of land user	ments 4 2 1 ts 0						
**************************************				Do+o	Dogardi	a.a.	
Name	Data Source			Data Type	Recordi ı I nterval	lg	
POI NTPELEE	6hr_SCSII_1(00Y		INTENSITY	10 min.	-	
******************* Subcatchment Summa ************** Name utlet		Wi dth	%Imperv	%SI ope	Rain Gage	Э	
S1	0. 12	41. 20	1. 50	0. 1000	POI NTPELI	 EE	 J4
S2	0. 40	133. 40	0.00	0. 1000	POI NTPELI	ĒΕ	J4
S3	0. 66	188. 74	0.00	0. 1000	POI NTPELI	ΕE	J4
S4	0. 05	26. 40	0. 00	0. 1000	POI NTPELI	EΕ	J4
************ Node Summary *********							
Name	Туре		nvert El ev.	Max. Depth	Ponded Area	External Inflow	
J4 0F1	JUNCTI ON OUTFALL		35. 05 35. 01	0. 30 0. 21	0. 0 0. 0		-
*********** Link Summary ********							
Name F oughness	rom Node	To Node	-	Гуре	Lenç	gth %	SI ope

27.3

0.1282

****** Cross Section Summary

J4

Condui t	Shape	Full Depth	Ful I Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	Overl and Flow	0. 21	7. 12	0. 14	51. 55	1	1. 51

***** Transect Summary ********

Transect OverlandFlow

Α	r	е	а	:

	0. 0001	0.0005	0. 0011	0. 0021	0. 0045
	0. 0083	0.0131	0. 0201	0. 0282	0. 0369
	0. 0467	0.0578	0. 0698	0. 0828	0. 0974
	0. 1141	0.1325	0. 1517	0. 1714	0. 1918
	0. 2128	0.2351	0. 2589	0. 2831	0. 3076
	0. 3323	0.3573	0. 3824	0. 4077	0. 4331
	0. 4592	0.4857	0. 5125	0. 5395	0. 5667
	0. 5942	0.6219	0. 6498	0. 6779	0. 7061
	0. 7345	0.7631	0. 7919	0. 8210	0. 8504
	0. 8799	0.9096	0. 9396	0. 9697	1. 0000
Hrad:	0. 0152	0. 0305	0. 0457	0. 0576	0. 0585
	0. 0666	0. 0837	0. 0856	0. 1029	0. 1264
	0. 1471	0. 1584	0. 1808	0. 1972	0. 2189
	0. 2077	0. 2146	0. 2424	0. 2695	0. 2958
	0. 3202	0. 3425	0. 3339	0. 3622	0. 3902
	0. 4180	0. 4460	0. 4741	0. 5020	0. 5298
	0. 5533	0. 5801	0. 6065	0. 6328	0. 6589
	0. 6849	0. 7108	0. 7372	0. 7635	0. 7897
	0. 8143	0. 8374	0. 8604	0. 8833	0. 9081
	0. 9328	0. 9574	0. 9820	1. 0064	1. 0000
Width:	0. 0081	0. 0163	0. 0244	0. 0518	0. 1028
	0. 1465	0. 1668	0. 2559	0. 2749	0. 3013
	0. 3434	0. 3836	0. 4053	0. 4516	0. 5155
	0. 5769	0. 6267	0. 6383	0. 6580	0. 6777
	0. 7118	0. 7575	0. 7921	0. 8004	0. 8092
	0. 8181	0. 8236	0. 8284	0. 8331	0. 8430
	0. 8686	0. 8761	0. 8838	0. 8916	0. 8993
	0. 9071	0. 9146	0. 9196	0. 9247	0. 9297
	0. 9364	0. 9445	0. 9527	0. 9608	0. 9674
	0. 9739	0. 9804	0. 9870	0. 9935	1. 0000

***************** NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

***** Analysis Options

Runoff Quantity Continuity	hectare-m	mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0. 137 0. 000 0. 058 0. 078 0. 002 -0. 115	111. 100 0. 000 46. 898 63. 073 1. 257
**************************************	Volume hectare-m	Volume 10^6 ltr
Flow Routing Continuity		
Dry Weather Inflow Wet Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)	0. 000 0. 078 0. 000 0. 000 0. 000 0. 078 0. 000 0. 000 0. 000 0. 000 0. 000	0. 000 0. 780 0. 000 0. 000 0. 780 0. 000 0. 000 0. 000 0. 000

All links are stable.

OM_FromLi dar_EX. rpt

****** Routing Time Step Summary

Mi ni mum Ti me Step :
Average Ti me Step :
Maxi mum Ti me Step :
Percent in Steady State :
Average I terations per Step :
Percent Not Converging : 3.50 sec 5.00 sec 5.00 sec 0.00

0.00

Subcatchment Runoff Summary

Peak Runoff Runoff Coeff Subcatchment CMS	Total	Total	Total	Total	Total	Total
	Precip	Runon	Evap	Infil	Runoff	Runoff
	mm	mm	mm	mm	mm	10^6 ltr
S1 0. 02 0. 575 S2 0. 07 0. 568 S3 0. 10 0. 566 S4	111. 10 111. 10 111. 10 111. 10	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	46. 13 46. 84 47. 13 46. 25	63. 86 63. 13 62. 83 63. 79	0. 08 0. 25 0. 42 0. 03

****** Node Depth Summary

Node	Туре	Average Depth Meters	Depth	HGL	Time of Max Occurrence days hr:min	Reported Max Depth Meters
J4	JUNCTI ON	0. 01	0. 10	185. 15	0 03: 02	0. 10
0F1	OUTFALL	0. 01	0. 10	185. 11	0 03: 02	0. 10

***** Node Inflow Summary

Maximum Maximum Lateral Total FI ow Total Time of Max Inflow Inflow Lateral Bal ance Inflow Inflow Vol ume Vol ume Occurrence Page 4

Error		OM_FromL	_i dar_EX.	rpt			
Node Percent	Туре	CMS	CMS	days hr:min	10^6 ltr	10^6 ltr	
J4 -0. 004	JUNCTI ON	0. 200	0. 200	0 03:00	0. 78	0. 78	
0F1 0.000	OUTFALL	0.000	0. 186	0 03:02	0	0. 78	

No nodes were surcharged.							

No nodes were flooded.

Outfall Node	Flow Freq Pcnt	Avg Flow CMS	Max Flow CMS	Total Volume 10^6 Itr
0F1	34. 91	0. 026	0. 186	0. 780
System	34. 91	0. 026	0. 186	0. 780

Li nk	Type	Flow	Time of Max Occurrence days hr:min	Maxi mum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1	CHANNEL	0. 186	0 03:02	0. 10	0. 12	0. 46

Condui t	Adj usted /Actual Length		Up	Down		Sup	Up	Down	Norm	Inlet Ctrl
C1	1. 00	0. 10	0.00	0.00	0. 90	0.00	0.00	0.00	0. 45	0.00

OM_FromLi dar_EX. rpt

****** Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Thu Oct 04 22: 28: 21 2018 Analysis ended on: Thu Oct 04 22: 28: 21 2018 Total elapsed time: < 1 sec

OM_FromLi dar_FUT. rpt

FUTURE CONDITIONS - O&M SITE

EPA STORM WATER	MANAGEMENT	MODEL -	VERSION 5.1	(Build 5. 1. 012)

*	*	*	*	*	*	*	*	*	*	*	*	*
_		_		_				$\overline{}$	_			

ΕI	ement	Count
* *	****	****

Number of rain gages 1
Number of subcatchments . . 4
Number of nodes 6
Number of links 5
Number of pollutants 0
Number of land uses 0

Name	Data Source	Data Type	Recordi ng I nterval
POI NTPELEE	6hr_SCSII_100Y	I NTENSI TY	10 min.

Name Outlet	Area	Width	%Imperv	%SI ope Rain Gage	
S1	0. 12	41. 20	1. 50	O. 1000 POINTPELEE	J6
S2	0. 40	133. 40	1. 70	O. 1000 POINTPELEE	J4
S3	0. 66	188. 74	0.00	O. 1000 POINTPELEE	J5
S4	0. 05	26. 40	0. 00	O. 1000 POINTPELEE	J3

Node Summary

Name	Туре	I nvert El ev.	Max. Depth	Ponded Area	External Inflow
J2	JUNCTI ON	185. 30	0. 30	0. 0	
J3	JUNCTI ON	185. 14	0.30	0.0	
J4	JUNCTI ON	185. 05	0.30	0.0	
J5	JUNCTI ON	185. 23	0. 30	0.0	
J6	JUNCTI ON	185. 17	0.30	0.0	
0F1	OUTFALL	185. 01	0. 21	0.0	

Li nk Summary

Name From Node To Node Type Length %SI ope Roughness

OM_FromLi dar_FUT. rpt

C1	J4	OF1	CONDUI T	34.6	0. 1010
0. 0450 C2	J6	J4	CONDUI T	67. 1	0. 1789
0. 0450 C2_1 0. 0350	J2	J5	CONDUI T	28. 1	0. 2595
C2_2 0. 0350	J5	J3	CONDUI T	48.8	0. 1843
C3 0. 0350	J3	J4	CONDUI T	40. 9	0. 2125

Condui t	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	Overl andSecti on	0. 21	7. 12	0. 14	51. 55	1	1. 34
C2	TRAPEZOI DAL	0. 30	0. 42	0. 18	2. 30	1	0. 12
C2_1 C2_2	TRAPEZOI DAL TRAPEZOI DAL	0. 30 0. 30	0. 87 0. 87	0. 22 0. 22	3. 80 3. 80	1 1	0. 47 0. 39
C3	TRAPEZOI DAL	0. 30	0.87	0. 22	3. 80	1	0. 42

Transect OverlandSection Area:

Area:	0. 0001 0. 0083 0. 0467 0. 1141 0. 2128 0. 3323 0. 4592 0. 5942 0. 7345 0. 8799	0.0005 0.0131 0.0578 0.1325 0.2351 0.3573 0.4857 0.6219 0.7631 0.9096	0. 0011 0. 0201 0. 0698 0. 1517 0. 2589 0. 3824 0. 5125 0. 6498 0. 7919 0. 9396	0. 0021 0. 0282 0. 0828 0. 1714 0. 2831 0. 4077 0. 5395 0. 6779 0. 8210 0. 9697	0. 0045 0. 0369 0. 0974 0. 1918 0. 3076 0. 4331 0. 5667 0. 7061 0. 8504 1. 0000
Hrad:	0.0777	0. 7070	0. 7370	0. 7077	1. 0000
Till dd.	0. 0152 0. 0666 0. 1471 0. 2077 0. 3202 0. 4180 0. 5533 0. 6849 0. 8143 0. 9328	0. 0305 0. 0837 0. 1584 0. 2146 0. 3425 0. 4460 0. 5801 0. 7108 0. 8374 0. 9574	0. 0457 0. 0856 0. 1808 0. 2424 0. 3339 0. 4741 0. 6065 0. 7372 0. 8604 0. 9820	0. 0576 0. 1029 0. 1972 0. 2695 0. 3622 0. 5020 0. 6328 0. 7635 0. 8833 1. 0064	0. 0585 0. 1264 0. 2189 0. 2958 0. 3902 0. 5298 0. 6589 0. 7897 0. 9081
Wi dth:					
	0. 0081 0. 1465 0. 3434 0. 5769 0. 7118 0. 8181	0. 0163 0. 1668 0. 3836 0. 6267 0. 7575 0. 8236	0. 0244 0. 2559 0. 4053 0. 6383 0. 7921 0. 8284	0. 0518 0. 2749 0. 4516 0. 6580 0. 8004 0. 8331 ge 2	0. 1028 0. 3013 0. 5155 0. 6777 0. 8092 0. 8430

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options ************ Flow Units

Flow Units	CMS
Process Models:	
Rainfall/Runoff	YES
RDI I	NO
Snowmel t	NO
Groundwater	NO
Flow Routing	YES
Ponding Allowed	NO
Water Ŏuality	NO
Infiltration Method	CURVE_NUMBER
Flow Routing Method	DYNWAVE
Starting Date	12/01/2016 00: 10: 00
Ending Ďate	12/02/2016 00: 00: 00
Antecedent Dry Days	0. 0
Report Time Step	00: 01: 00
We't Time Step	00: 05: 00
Dry Time Step	00: 05: 00
Routing Time Step	5.00 sec
Variable Time Step	YES
Maximum Trials	8
Number of Threads	1
Head Tolerance	O. 001500 m

**************************************	Volume hectare-m	Depth mm
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	0. 137 0. 000 0. 050 0. 086 0. 002 -0. 121	111. 100 0. 000 40. 394 69. 589 1. 251

**************************************	Volume hectare-m	Volume 10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0. 086	0. 861
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.086	0. 861
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000

Page 3

OM_FromLi dar_FUT. rpt 0.000 0.000

Final Stored Volume $\overline{0}$.000 Continuity Error (%) 0.000

None

All links are stable.

Minimum Time Step : 3.50 sec
Average Time Step : 5.00 sec
Maximum Time Step : 5.00 sec
Percent in Steady State : 0.00
Average I terations per Step : 2.00
Percent Not Converging : 0.00

Subcatchment Runoff Summary

Peak Runoff Runoff Coeff Subcatchment CMS	Total	Total	Total	Total	Total	Total
	Precip	Runon	Evap	Infil	Runoff	Runoff
	mm	mm	mm	mm	mm	10^6 ltr
S1 0. 02 0. 575 S2 0. 10 0. 750 S3 0. 10 0. 566 S4 0. 01 0. 574	111. 10 111. 10 111. 10 111. 10	0. 00 0. 00 0. 00 0. 00	0. 00 0. 00 0. 00 0. 00	46. 13 26. 73 47. 13 46. 25	63. 86 83. 27 62. 83 63. 79	0. 08 0. 33 0. 42 0. 03

Node	Туре	Average Depth Meters	Depth	HGL	Time of Max Occurrence days hr:min	Reported Max Depth Meters
J2	JUNCTI ON	0. 00	0.06 Page 4	185. 36	0 03:02	0. 06

		OM_FromL	₋i dar_FU1	「. rpt			
J3	JUNCTI ON	0. 01	0. 14	185. 28	0	03: 04	0. 14
J4	JUNCTI ON	0. 02	0. 10	185. 15	0	03: 05	0. 10
J5	JUNCTI ON	0. 01	0. 14	185. 36	0	03: 02	0. 14
J6	JUNCTI ON	0. 01	0. 13	185. 30	0	03: 03	0. 13
0F1	OUTFALL	0. 02	0. 10	185. 12	0	03: 05	0. 10

		Maxi mum	Maxi mum		Lateral	Total
Flow				Time of May		
Bal ance		Lateral	Total	Time of Max	Inflow	Inflow
Fran		Inflow	Inflow	Occurrence	Vol ume	Vol ume
Error Node Percent	Type	CMS	CMS	days hr:min	10^6 ltr	10^6 Itr
					_	
J2 0. 391	JUNCTI ON	0.000	0. 004	0 02: 57	0	0. 0021
J3 0. 034	JUNCTI ON	0. 011	0. 104	0 03: 02	0. 0337	0. 449
0. 034 J4 0. 019	JUNCTI ON	0. 098	0. 206	0 03:02	0. 333	0. 861
J5	JUNCTI ON	0. 100	0. 100	0 03:00	0. 415	0. 417
-0. 033 J6	JUNCTI ON	0. 021	0. 021	0 03:00	0. 0789	0. 0789
-0. 036 0F1 0. 000	OUTFALL	0.000	0. 199	0 03: 05	0	0. 861

No nodes were surcharged.

Node Flooding Summary

No nodes were flooded.

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	FI ow	Volume
	Pcnt	CMS	CMS	10^6 Itr
0F1	51. 41	0. 020	0. 199 Page 5	0. 861

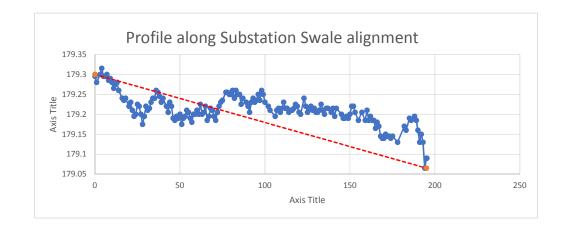
OM_FromLi dar_FUT. rpt

System 51.41 0.020 0.199 0.861

Maximum Time of Max Maximum Max/ Max/ |Flow| CMS Occurrence | Veloc| Ful I Full Li nk days hr:min Type m/sec FI ow Depth 0 03: 05 0. 10 0 03: 03 0. 20 C1 0. 199 0. 15 0. 16 CHANNEL 0.48 C2 **CONDUIT** 0.019 0.39 C2_1 C2_2 0.004 0 02: 57 CONDUI T 0.03 0.01 0.33 CONDUI T 0.094 0 03: 02 0. 29 0. 24 0.46 0 03: 04 C3 **CONDUIT** 0. 101 0.35 0.24 0.41

Condui t	Adjusted /Actual Length	Dry	Up Dry	Down	ion of Sub Crit	Sup	Up	Down	Norm	Inlet Ctrl
C1 C2 C2_1 C2_2 C3	1. 00 1. 00 1. 00 1. 00 1. 00	0. 07 0. 07 0. 12 0. 10 0. 07	0. 00 0. 04 0. 66 0. 01 0. 04	0. 00 0. 00 0. 00 0. 00 0. 00	0. 22 0. 88	0.00	0. 00 0. 00 0. 00		0. 86 0. 84 0. 87	0. 00 0. 00 0. 00 0. 00 0. 00

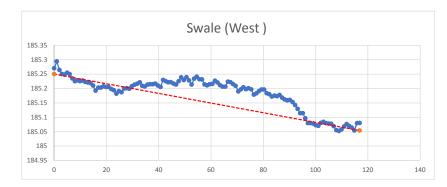
Conduit Surcharge Summary


No conduits were surcharged.

Analysis begun on: Thu Oct 04 22:52:23 2018 Analysis ended on: Thu Oct 04 22:52:23 2018

Total elapsed time: < 1 sec

SWALE CAPACITY CALCULATIONS - SUBSTATION


Swale Capacity (West)	
Side slopes (H_V m/m)=	3
Slope	0.12%
Mannings n =	0.035
Length - L (m) =	120
water Depth -D (m) =	0.3
Bottom Width (m) =	5
Top Width (m) =	6.8
A =	1.77
R =	0.26
Qcap =	0.71
100y Flow from Modelling	0.5

SWALE CAPACITY CALCULATIONS - O&M BUILDING

Swale Capacity (West)	
Side slopes (H V m/m)=	3
Slope	0.17%
Mannings n =	0.035
Length - L (m) =	70
water Depth -D (m) =	0.3
Bottom Width (m) =	1
Top Width (m) =	2.8
A =	0.57
R =	0.19673
Q =	0.23
100Y Flow from modelling	0.02

Swale Capacity (East)	
Side slopes (H_V m/m)=	3
Slope	0.10%
Mannings n =	0.035
Length - L (m) =	120
water Depth -D (m) =	0.3
Bottom Width (m) =	1
Top Width (m) =	2.8
A =	0.57
R =	0.19673
Q =	0.178
100Y Flow from modelling	0.101

